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Abstract

Transformations of coordinates are common geodetic operations. For example, networks of GPS measurements are
processed in X, Y,Z Cartesian coordinates but locations of network stations are usually transformed to geodetic
coordinates ¢, A,k (latitude, longitude and height) related to the reference ellipsoid. And ¢, 4 may be transformed to

E,N grid coordinates on a map projection. Such transformations are shown symbolically as (X,Y,Z) < (¢,4,h) and
(¢,1) © (E,N) where < represents sets of equations linking coordinates.

If the precisions of coordinates are known in one system, then precisions in the transformed system can be evaluated by
propagation of variances expressed mathematically as a sequence of matrix operations. One of the matrices involved is

the Jacobian matrix of first-order partial derivatives, and this paper gives the derivation of various partial derivatives as
well as examples of their application.

Introduction

Something to be added here



Nomenclature

£  eccentricity of ellipsoid Ey, false origin offset
& 2nd eccentricity of ellipsoid S flattening of ellipsoid
A longitude h  ellipsoidal height
A, longitude of central meridian m, central meridian scale factor
v radius of curvature of ellipsoid in prime N north grid coordinate

vertical plane No false origin offset
p  radius of curvature of ellipsoid in prime n 3rd flattening of ellipsoid . .

. p  perpendicular distance from rotational axis of
vertical plane S
. . ellipsoid
o, standard deviation of random variable x R radius of spherical earth
o’ variance of random variable x u  transverse Mercator coordinate (north)
o, covariance between random variables x and y Vv latitude function .
w ) v transverse Mercator coordinate (east)
¢ latitude W latitude function
@ longitude difference: w=A4- A4, X  Cartesian coordinate
a  semi-major axis of ellipsoid Y Cartesian coordinate
b semi-minor axis of ellipsoid Z  Cartesian coordinate
¢ polar radius of ellipsoid
E  east grid coordinate
Ellipsoid and coordinates 7

Figure 1 The ellipsoid and coordinates

Figure 1 shows a point P related to the centre O of an ellipsoid. In geodesy, the ellipsoid is a surface of revolution
created by rotating an ellipse (whose semi-axes lengths are @ and b and a > b ) about its minor axis. The ellipsoid is the

mathematical surface that idealizes the irregular shape of the earth and it has the following geometrical constants
(Deakin and Hunter 2013):
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3rd flattening n= (@)
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These geometric constants are inter-related as follows
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The ellipsoid radii of curvature p (meridian plane) and v (prime vertical plane) at a point whose latitude is ¢ are
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where the latitude functions V and W are defined as
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The minor axis of the ellipsoid is assumed to be coincident with (or parallel to) the earth’s rotational axis. The normal
to the ellipsoid passing through P intersects the ellipsoid at O, passes through the equatorial plane and intersects the axis
of revolution at H. The distance &= QH is the ellipsoidal height. The distance v = QH is the radius of curvature of

the ellipsoid in the prime-vertical plane. The angle ¢ between the normal through P and the equatorial plane is the

latitude of P. Latitudes are measured 0° to 90° positive north and negative south of the equator. The plane containing
P, H and N is the meridian plane of P and the angle A between this plane and a reference meridian (Greenwich) is the
longitude of P. Longitudes are measured 0° to 180° positive east and negative west of Greenwich. ¢,,4,,h, are
geographic coordinates of P.

Figure 1 shows an X,Y,Z Cartesian reference frame with an origin at the centre of the ellipsoid O. The Z-axis passes

through N, the north pole of the ellipsoid; the X-Z plane is the reference plane for longitudes (Greenwich) and the X-Y
plane is the equatorial plane of the ellipsoid. The X-axis passes through the intersection of the Greenwich meridian and

the equator and the Y-axis is advanced 90° eastwards around the equator from the X-axis. X,,Y,,Z, are Cartesian
coordinates of P.



Propagation of Variances

Suppose that y =[y, y, = , ]T and x=[x, x, - x, ]T are vectors of random variables that are related

through a function f thus:
y=/(x) (13)
Then the general law of propagation of variances (Mikhail 1976) can be expressed as
z, =JZ J (14)

Where £, and X are square and symmetric variance matrices
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Where the diagonal elements Gfl 02, .00 651 ,0?,...0" are variances and the off-diagonal elements O,s Oy see
are covariances and J is a Jacobian matrix of partial derivatives given by
ox, ox, ox,
J=|0x ox, ox,, (16)
| 0x, o, ox,, |

As an example, consider a horizontal line of measured length / and measured bearing S where the standard deviations
of length and bearing are 0, and 0. The components E and N of the line are E =/sin § and N =Icos § which are

computed quantities. What are the standard deviations of E and N?

o; 0
Let y =[E N]T and x =|l ,B]T then X ={ ! 2}
0 oy

noting that if the measurements / and £ are independent then covariance 0,5 =0, =0 and

0E OE
3 o ﬁ _|sing  lcosf
1= ON OoN _[cosﬁ —lsinﬂ}
B

An application of (14) gives the variances and covariances of the computed quantities as
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Geographic to Cartesian Transformations (¢,A,h)=(X,Y,Z)

where = represents a set of equations that enable the transformation of geographical coordinates ¢, 4, s to Cartesian

coordinates X,Y,Z.

The Cartesian equations of a point related to the centre of an ellipsoid are (Deakin & Hunter 2013)

X =(v+h)cosgcos A 17
Y =(v+h)cosgsin A (18)
Z=(v(1-&")+h)sing (19)
If ¢,A,h are regarded as random variables with variances 6;, o;, 0, and covariances Oy =0, 0, =0,
then the variances and covariances of the computed quantities X, Y,Z can be evaluated from (14) where
y=[x v z]',x=[¢ A h] and
Ly, =J ):m;, J (20)

where
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Equation (20) is given in Harvey (1986) and the partial derivatives in the Jacobian matrix J are derived in the following

manner.

Substituting (11) and (12) into (17), (18) and (19) gives the X,Y,Z coordinates as functions of a, W, ¢, A and h as

x oy az
¢’ d¢’ ¢
Using (10), (11), (12) and (21)
0X

Derivatives
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X = %cos¢cosﬂ+hcos¢cosl
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_ £”singcos ¢
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Similarly, using (22)
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a—Y:—(p+h)sin¢sin/l (25)
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Using (10), (12) and (23)
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Similarly
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And, since Z is independent of A
oz
-0 29
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Similarly
3—Z:cos¢sin/l 31
and
%:singb (32)



The Jacobian matrix J for propagation of variances in Geographic to Cartesian transformation is

o o ax

dp 04 Ooh —(p+h)singcos A | —(v+h)cosgsin A | cosgcos A

aY aY oy T i
J=|— — —|=|-(p+h)singsind | (Vv+h)cosgcosd | cosgsin]

d¢ 04 oh (p+h)cosg 0 sin ¢

oz oz az| LV

| 0p 04 oh |

(33)

This is equivalent to Harvey (1986, eq. 5, p. 110). The partial derivatives in J are also given in Soler (1976, eq. 3.2-8,

p. 11).

Cartesian to Geographic Transformations (X,Y,Z)=> (4,A,h)

Where = represents the set of equations that enable the transformation of Cartesian coordinates X,Y,Z to geographical

coordinates @, 4,k .

The geographic coordinates of a point whose X,Y,Z coordinates related to the centre of an ellipsoid are known can be

evaluated from (Deakin & Hunter 2013)

ptang=Z+VE sing (34)
p=X>+Y’ (35)
Vz(l—é‘2 sin® ¢)=a2 (36)
Y=XtanA 37
h=psecg—v (38)
If X,Y,Z are regarded as random variables with variances o7}, 0}, 0, and covariances 0y, = 0y, ,0y, =0, ,0,, =0,
then the variances and covariances of the computed quantities @, 4,/ can be evaluated from (14) where
y=[¢ A ], x=[X Y Z] and
T =y 17 (39)
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The partial derivatives in the Jacobian matrix J* are derived in the following manner.
dp 09 ¢
Derivatives ——,=——,=~
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Partially differentiate (34) with respect to X keeping Y and Z fixed gives
ap 2 a¢ aV 2 . 2 a¢
—tan@+ psec’ 9—=——& sinP+Vve” cosPp— 40
ax MOTPE Oy oy &S 3 0
From (36) vW =a, so that ﬂW +Va—W =0 from which ﬂwz = —VWa—W
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By (12) wW e in Pcos ¢—¢ , 50 that 2L W2 =ve® sin Pcos ¢—¢ and hence
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v _ve 99

— = sin @ cos p—— 41
X a peosg X “h
Differentiate (35) with respect to X to obtain paa—)l; =X and so
8_ = X =cosA 42)
X p
Substituting (41) and (42) into (40) and re-arranging gives
I cos Atan ¢ @3)

X Ve
S cosg— psec’ ¢
a

The numerator of (43) can be simplified as follows
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Using (44) in (43) gives
%: —sing@cos A 45)
oX p+h
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%: : 2sin/ltan¢ :—sin¢s}iln/l 46)
Vaf cosg— psec’ ¢ Pt
Finally
99 _ 1 _ _ cosﬁ @7
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Derivatives Tt o1
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Partially differentiating (37) with respect to X gives
0=tan A+ X sec’ /18—/1
12).¢
And so
04 —sindcosA —sind —sin 4
= = = (48)
oX X p  (v+h)cos¢
Similarly
oA coszl: cosd _ cosd 49)

¥ X p  (v+h)cosg



Finally, partially differentiating (37) with respect to Z gives

oA
—=0 50
3 (50)
. . 0h Oh Oh
Derivatives —,—,—
0X’'dY’ dZ
Differentiate (38) with respect to X to obtain
oh dp d¢ v
—=——secP+ psecPtan p————
ax ~ax O PSCONOG Tk
And so
3,2
%:cosﬂsec¢+ S Zcos/ltan(/? psecz¢—vf cos @ |sin¢@ (51
oX 1% ) a
S~ COs@— psec” @
a
Using (44) in (51) and simplifying gives
oh
— =cos¢@cos 52
X 9 (52)
Similarly
. 3,2
%:sin/lsec¢+ 3 Zsmltan(/? [psecng—vf cos¢]sin¢:cos¢sin/1 (53)
aY Ve ) a
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a
And
oh 1 vie? . .
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a
The Jacobian matrix J* for propagation of variances in Cartesian to Geographic transformation is
(9 34 09 —singcosA | —singsind | cos¢
X oY oz p+h p+h p+h
= 8_/1 8_/1 8_/1 _ —sin A cos A 0 (55)
0X oY 0dZ (v+h)cosg | (Vv+h)cosg
oh oh OJh
WX or oz cosgcosA | cos@sind | sing

The partial derivatives in J* are given in Soler (1976, eq. 3.7-2, p. 20).

Harvey (1986, eq. 8, p. 111) has alternative expressions (some containing approximations) for the partial derivatives in
J*. The interested reader with some algebra and inspiration from the derivations above should be able to obtain our

expressions from Harvey’s.

An alternative approach to determining the elements of the Jacobian matrix J* follows from (20) and with some matrix

algebra (noting that X, and X,,, are symmetric) we write
ey =JZ T
J ', =21
=, (1) =15,
'y, (37) =2,

(56)




And comparing (56) and (39) implies

y=7 (57)
Following Deakin (2004) the inverse of J can be found by the method of cofactors and adjoints (Mikhail 1973, pp. 442-
5).

a, 4dp 4

adj A

Al

and |A| is the determinant of A, a scalar quantity. Each element g;; of A has a minor m,; and a cofactor ¢,;. The

Fora 3x3 matrix A=|a, a, a, |theinverse A™' isgivenby A~ = is the adjoint matrix

a a a

31 32 33

minor of each element is the determinant of the elements of A remaining after row k and column j are deleted, eg,
k+j .
M| = Gy lyy = Ay, 5 My, = ay, sy — dyydy, and my, = a,,a,, —a,3a,, . The cofactors ¢, =(=1)"" m,; form a matrix C
j=3
whose transpose is the adjoint matrix. The determinant |A| = Za,q.c,q. and k=1, 2, or 3.
j=1
The elements of the cofactor matrix of J are

¢, = +{|:(V +h)cos gcos ﬂ}[sin #]—[cos #sin /1][0]}
=(v+h)singcosgcos A
= —{[—(p+h)sin¢sin A][sin ¢]—[cos gsin /1][(,0+h)cos¢]}
—{—(p+h)sin/1(sin2 @ +cos’ ¢)}
=(p+h)sind

= +{[—(p+h)sin¢sin l][O]—[(v +h)cos@cos 1][(p+h)cos¢]}
—(v+h)cospcosA(p+h)cosg

Cy =—{[—(v+h)cos¢sin ﬂ][sin #]—[cosgcos 11[0]}
=(v+h)singcos gsin A
=+{[—(p+h)sin¢cos/1][sin¢]—[cos¢cosﬂ][(p+h)cos¢]}

p+h)cos A(sin® ¢ +cos’ ¢)
p+h)cos A

[ (p+h sm¢cosﬂ][0] [ (v+h) cos¢sm/1][ p+h) cos¢]}
v+h)cosgsin A(p+h)cos @

v+h)cos” ¢(sin® A+cos’ 1)
V+h)cos® ¢
[ (p+h s1n¢cosﬂ][cos¢sm/1] [cos¢cosﬂ][ (p+h sm¢sm/l]}

=—(
=—(
=—{[(
=—(
+{[ (v+h) cos¢s1n/1][cos¢sm/l] [cos¢cosﬂ,][(v+h)cos¢cosl]}
=—(
=—(
=-{
=—{—(p+h)cospcos A(singsin A —singsin 1)}

(e}

€y = +{[—(p+h)sin¢cos A][(v+h)cos gcos A]—[ (v +h)cos gsin A ][ —(p+h)sin gsin /ﬂ}
= +{—(p+h)sin ¢cos (v +h)(cos® A+sin’ /1)}
—(p+h)sing(v+h)cos¢
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The determinant |J | is given by

|J| = J3iCs1 F 3l t JssCxs

:(p+h)c0s¢(—(v+h)cos2 ¢)+0+sin¢(—(p+h)sin¢(v+h)cos¢)

=—(v+h)cosg((p+h)cos’ g+(p+h)sin® @)

=—(v+h)cosg(p+h)
. T
The inverse J ™' = adjJ :C— and
bl
[9¢ 0¢ 0p |=Singcosd | —singsind | cosg
X oY oz p+h p+h p+h
. 1l 04 d41 94 —sin A cos A
I=d 0X oY dZ| |(v+h)cos¢ | (v+h)cose ©8)
oh oh Oh
93X 9y o7 cosgcosA | cosgsind | sing
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Geographic to Transverse Mercator Grid Transformation (¢,/1) = (E ,N )

Where = represents the set of equations that enable the transformation of geographical coordinates ¢, A to Transverse
Mercator (TM) Grid coordinates E,N.

Y-

Figure 2 Transverse Mercator projection ( A4, =120° East )

The TM projection coordinates u,v of a point whose latitude and longitude are @, 4 on a spherical earth of radius R are
(Deakin et al. 2012)

u= Rarctan( tan¢j (59)
cosw
Ry LECOSOSIN®D ) _ Ry (14 cos gsin @) K n (1 - cos dsin o) (60)
2 \l-cosgsinw) 2 2
where
w=1-1 (61)

and 4, is the longitude of a chosen central meridian.

In Figure 2 the u-axis points north and lies on the central meridian of the projection. The v-axis points east and lies on
the equator. The u,v coordinate origin is the true origin of the projection. The TM projection is ideally suited to display
northern and southern zones of the earth with large latitude extent and small longitude extent.

For convenience a TM Grid (E,N) is superimposed over a region of interest with a false origin offset from the true
origin and

E=v+E, (62)
N=u+N, (63)

For northern zones the false origin is a distance E, west of the central meridian and N, north of the equator. For

southern zones the false origin is E;, west and N, south of the equator.
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If ¢,A are regarded as random variables with variances 0';, o; and covariances 0,, =0, then the variances and

covariances of the computed quantities E,N can be evaluated from (14) where y = [E N ]T , X= [¢ /1]T and

Ly =JZ,J (64)
9E JE
; ¢ 04 ol o
where ZEN=|:O-E O-Ez :|§ J= a¢ 3 ; E¢/1=|: ? ¢;:|
Ow Oy ON oN Oy O,
9% A

The partial derivatives in the Jacobian J are derived in the following manner

OE JE
3¢ A

Derivatives

Because of (61) and (62) and since A, and E, are constants a—E = i OF = o

3 09 04 dw

Differentiate (60) with respect to ¢ keeping @ fixed yields

Q—LR —sing@sin @ _1g sin@sin @
d¢ > l+cosgsinw ° 1—cos@sinw
— 1 Rsingsinw 1—cos¢s'%na)+1+cos¢s?nw
(1+cos ¢sin @) (1—cos @sin @)

_ —Rsingsin®
1—cos’ ¢sin’ @

And so
8_E= —Rs1121¢s%n2a) 65)
09 1—cos” ¢sin” @
Similarly
B_E= Rcosz¢0(?s§0 66)
04 1—cos” ¢sin’ @
ON oN
Derivatives —-,<—
39" A
Because of (63) and since N, is a constant W = a_u N = u .
dp Jd¢ JIAl OJw
Differentiate (59) with respect to ¢ gives
du _ R sec’ ¢ Rcos ® _ Rcosw
¢ 1 ( tan ¢ )2 cos® cos’ gcos’ w+sin’ @ 1—cos’ gsin’ @
+ -
cos @
So that
W ___Rewo (67)
0¢ 1—cos” ¢sin” @
Similarly
oN _ Rsingcosgsin 68)

94 l-cos’gsin*@
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The Jacobian matrix J for propagation of variances in Geographic to TM Grid transformation is

9E JE
dp 9 R —singsinw | cosgcosw

1= ON IN T cos’ psin® @| cos@ } sin @ cos @gsin @ (69)
d¢ 0dA

Transverse Mercator Grid to Geographic Transformation (E N)= (¢, /1)

Where = represents the set of equations that enable the transformation from TM Grid coordinates E,N to geographical
coordinates ¢, A .

. . . 2 2 . .
If E,N are regarded as random variables with variances o, 0, and covariances o, = 0,, then the variances and

covariances of the computed quantities ¢, 4 can be evaluated from (14) where y = [¢ E]T , X= [E N ]T and

L, =t (70)
dp 99
oc. o 0E ON oc. o
h Yy o= ¢ o : — D Y E EN
where " {O'M o2 } J % a_ﬂ, BN 5, o
0E ON

The partial derivatives in the Jacobian J are derived from (64) and with some matrix algebra (noting that £,, and X,

are symmetric) in the following manner

Loy = JZM J
J” Loy :Em J
T
zo (1) =azh
_ _\7
'z, (3 =%, 1)
Since J is 2X2 matrices we use the standard matrix result:
a a 1 a —a
IfA= [ ! 12} is non-singular, the inverse Al = —{ 2 12}

a4y a4y a0y —apay, |~y 4y

. o . o .
And, using a rule for matrix inverse: (@¢A)” =—A"" (for & ascalar) we write Error! Reference source not found. as
a

- [ R {—sin¢sina)i COS () COS @ Dl

T .
l-cos’ gsin*@| cos@ | singcosPsinw

_(1—cosz¢sin2 a)}( 1 ]{sin¢cos¢sina) I —cos¢cosa)}

R —sin® gcos gsin® @—cos gcos’ @ —cos @ E —singsin @

Noting that
—sin” gcos gsin® @—cos gcos” @ = —cos @ (sin’ Psin’ @+ cos’ @)
= —cosqﬁ((l—cos2 (,i))sin2 @+ cos’ a))

= —cos¢(1— cos” gsin’ a))
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The inverse of the Jacobian matrix is

99 09
L |9 on| 1]|-singsine } cos @ ,
1= oA 1| R sec @cos @ i tan @sin @ (72)
OE ON
And the partial derivatives are
0¢ —singsinw
£= s1nis1n 73)
d 0]
94 _ cos@ 75
OE Rcos¢
oAl _singsin® 76)

N Rcos¢

Example 1

A recent GPS campaign in the Rotorua region New Zealand included observations at Mt. Ngongotaha. The processing
software gave the following Cartesian coordinates:

Mt. Ngongotaha:

-5013888.2149 m o0, =0.0124 m
333204.0203 m o, =0.0077 m
=-3916273.4839m o, =0.0097 m

N~
1]

with standard deviations/correlations:
| X (m) Y (m) Z(m)
X(m) | 0.0124 -0.0922 0.9291
Y(m) | —0.0922 0.0077 -0.0871
Z(m) 0.9291 -0.0871 0.0097

(77)

Correlations ( Py, = Py s Pxz = P s Py, = P,y ) Which are the off-diagonal elements of (77) are functions of standard

deviations (o, ,0,,0,) — the diagonal elements of (77) — and covariances (0, = 0, ,0,, =0, ,0,, =0,, ) and are
given by
o,
Py =2 (78)
0,0,
Where —1< p, <1.
For Mt. Ngongotaha the variance matrix X,,, is
o, 0, Oy 1.5376E—04 -8.8033E—06 1.1175E—04
L =|0x 07 0, |=|-8.8033E-06 5.9290E-05 —6.5055E-06 (79)

o, O, O 1.1175E—04 —6.5055E—06 9.4090E—05

X, is obtained from (77) using (78) and the fact that standard deviations are defined to be the positive square roots of

variances.

We now wish to use these values to compute: (i) the geographical coordinates (¢,4,h) and the variances and

covariances of these computed quantities; and (ii) the TM Grid coordinates (E N ) and the variances and covariances

of these computed quantities.
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Using the Cartesian coordinates and Bowring’s iterative method (Deakin & Hunter 2013) the geographical coordinates
(¢, A,h) related to the WGS84 ellipsoid (a = 6378137, f =1/298.257223563) are:

Mt. Ngongotaha: ¢ =-380706.095401"
A=176°11'52.551149"
h=786.1195 m

With radii of curvature: P =6359758.0484 m (meridian)

Vv =6386287.4527 m (prime vertical)
r, =+/pV =6373008.9460 m (mean)

The variance matrix of the computed geographical coordinates X, is given by (39) where the Jacobian matrix J ",

given by (55) is
—singcos A | —singsin A | cos¢
p+h p+h p+h
—9.6836E—-08  6.4353E-09 1.2369E-07
—sin A cos A

J = 0 [=|-13196E-08 —-1.9857E-07 0 (80)
(v+h)cosg | (Vv+h)cosg
-7.8501E-01 5.2168E—-02 —6.1729E-01

cosgcosA | cosgsind | sing

An application of (39) gives

ol o, o, 2.0736E—19 —7.0431E-20 4.2625E-13
T =0, O 0, |=|-T0431E-20 23184E-18 -2.7465E-13 81)
G On OF 42625E—13 —27465E—13  2.4021E—04

The variance matrix can be converted into an array of standard deviations/correlations
| pm) A(m) h(m)
¢(m) | 0.0029 -0.1016  0.0604
A(m) | -0.1016  0.0077 -0.0116
h(m) | 0.0604 -0.0116 0.0155

(82)

Where the standard deviations in latitude and longitude are expressed as linear quantities on the ellipsoid: ¢(m)= o0,

A(m)=0,vcos¢ and h(m)=0,. 0,,0,,0, are the square-roots of the diagonal elements of (81).

On

0,0,

The correlations in (82) are evaluated using (78) with appropriate elements of (81); for example: p,; =

The geographical coordinates (¢, 4) can be transformed to TM Grid coordinates (E,N) where the central meridian is

/10 =177" East , the central meridian scale factor is k, = 0.9996 and the false origin offsets are E, = 500,000 m and
N, =10,000,000 m .

E= 429,693.2527 m
N =5,780,748.7974 m

The variance matrix of the computed grid coordinates X, is given by (64) where X, is the upper-left block of
elements from (81)

%, = (83)

=7.0431E-20 23184E-18

o: 0, | [ 2.0736E-19 ~7.0431E-20
o, O, -

And the Jacobian matrix J, given by (69) is
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0E OE

3 | R —singsin® | cospeos® | [ 550757002 5014000.4506
N N | l-cos’gsin@| cos@  singcosgsinw| | 6373157.4857  43330.1054
EYREY)

} (84)

where R=r, =/pv and o=1-4,.

An application of (64) gives the variance matrix

y - o, O, | 58247TE-05 -1.6743E-06 (85)
™o, o) | |-1.6743E-06  8.3878E-06
The variance matrix can be converted into an array of standard deviations/correlations
| Em) N

Em) | 0.0076 —0.0757 (86)
N@m) | -0.0757  0.0029

Systematic Errors and the Total Increment Theorem in Coordinate Transformations

The effects of random errors in coordinate transformation can be investigated using Propagation of Variances as
outlined in sections above. To assess the effects of systematic errors we may use the Total Increment Theorem that we
express as:

For a function w= w(x, y,z,...t) the total increment Ow is

ow ow ow ow
Ow=—0x+—0y+—0z7++—20 87
w o x+ay y+az Z+--+ 5 t (87)

And we consider increments dx,dy, etc. represent systematic errors.

Example 2

Consider the effect of ‘rounding’ in Cartesian to geographic transformations where it is assumed that the X,Y,Z
Cartesian coordinates have been rounded to the nearest millimetre (mm) prior to conversion to geographic coordinates
@, A, h . In this case rounding induces maximum systematic errors 0X = JdY = 0Z =0.0005 m and we wish to evaluate

the errors d¢, 94, 0h in latitude, longitude and height respectively.

Write ¢, A,k as functions of X,Y,Z in the general form

9=9(X.Y.Z)
A=A(X.Y,Z) (88)
h=h(X,Y,Z)
And using the total increment theorem (87) write
5¢z%5X +%5Y +%5Z
oX oY 0Z
oA oA oA
A=—0X+—0Y+—95Z 89
ox " Ty Tz %

h . o . on
on="Tsx + sy 957
x Ty Tz

Equations (89) can be represented in matrix form as
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[0¢ 99 99|
o ax  az o0X ) oX
N |= 4 04 94 oY | or |0 |=]"| oY (90)
oh X o 9z oz Oh oZ

oh oh Oh

ox ov oz

And the partial derivatives in J* are given in (55)

If we round the Cartesian coordinates of Mt. Ngongotaha to the nearest mm and assume that the maximum rounding
errors are 0X =JdY =0Z =0.0005 m then using (80) and (90)

o9 oX 0.000003 |seconds
N |=J"| oY |=|—-0.000022 |seconds
Oh oz —0.000675 | metres

So we can assume that (in this case) rounding to the nearest mm before transforming Cartesian to Geographic will not
induce errors greater than 0.00005 seconds of arc in latitude or longitude or errors greater than 0.001 mm in ellipsoidal
height.

Example 3

Consider the effect of rounding in the transformation from Geographic coordinates (¢,4) to TM Grid (E,N).

Similarly to the example above we may write

E=E(¢.1
(0.4) on
N=N(¢.2)
And using the total increment theorem (87) write
OE = B_E op+ B_E o
o9 oAl
ON oN ©2)
ON =~—0p+—0A
¢ o4
Equations (92) can be represented in matrix form as
E o
OE 09 A || o¢ OE op
- =~ 93
vl lay ] [sn]- e
0¢ 94

And the partial derivatives in J are given in (69)

Now suppose that ¢,4 for Mt Ngongotaha are rounded to the nearest 0.0001” before transforming to E,N grid
coordinates. This supposes maximum rounding errors d¢ = o4 =0.00005”. Then using (84) and (93)

OE -3 6¢ | |0.0012 |metres
SN| “|S4] |0.0016 |metres

So we can assume that (in this case) rounding to the nearest 0.0001” before transforming Geographic to TM Grid will
not induce errors greater than 0.002 metres.
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